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ABSTRACT

Many indoor localization algorithms have been proposed to
enable location-based applications in indoor environments.
However, these systems are monolithic and not component-
based. We present BearLoc, a distributed modular frame-
work for indoor localization systems that provides (1) natu-
ral development abstractions for sensor, algorithm, and ap-
plication components, and (2) easy and flexible component
composition. We demonstrate the merits of BearLoc with
an example use case. Our evaluation shows we can reduce
developer lines of code by 60% while introducing acceptable
network delay overhead.

Categories and Subject Descriptors

D.2.11 [Software Engineering]: Software Architectures—
Patterns (e.g., client/server, pipeline, blackboard), Domain-
specific architectures; C.2.4 [Computer-Communication
Networks]: Distributed Systems— Distributed applications;

D.2.12 [Software Engineering]: Interoperability—Distributed

objects

Keywords

Localization; Framework; Composability

1. INTRODUCTION

Location information is important for many Internet of
Things (IoT) applications. GPS-enabled location-based ser-
vices have brought tremendous benefits to people’s lives. For
indoor environments, GPS alone cannot be a solution. Re-
searchers have explored alternatives such as signal finger-
prints, triangulation, trilateration, dead reckoning, and data
fusion algorithms.

These efforts focus generally on achieving accuracy rather
than ease of development. They are designed and imple-
mented as monolithic systems that cannot be broken into
distributable, composable, and reusable pieces. These sys-
tems have impeded the portability and deployment of indoor
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localization technologies. To deploy an indoor localization
system developed by others, a developer still faces a signif-
icant implementation challenge. This is because there is no
intermediate system that supports abstraction and modular-
ization, manages the interfaces, and ensures interoperability
between different components.

In this paper, we present BearLoc, a distributed modular
framework for indoor localization systems that provides nat-
ural abstractions and composability. We claim the following
contributions in BearLoc:

e To our knowledge, BearLoc is the first modular frame-
work for indoor localization systems. It forms an ecosys-
tem for portable and composable indoor localization
system components.

e We base BearLoc on the intrinsic separation of three
system components: sensors, algorithms, and applica-
tions.

e We design and develop a simple Binding Control Pro-
tocol to easily compose components and maintain bind-
ings, where sensor data is mapped onto locations through
algorithms.

The rest of this paper is organized as follows: Section 2
gives an overview of typical indoor localization system archi-
tectures. Section 3 discusses our design decisions. Details of
the BearLoc system architecture are in Section 4. Section 5
gives a use case to show how BearLoc simplifies development
and deployment. Section 6 is an evaluation of our BearLoc
implementation. Section 7 concludes the paper.

2. RELATED WORK

Researchers usually build their own systems to evaluate
indoor localization algorithms. Because their focus is on
algorithm performance, those systems are not designed for
modularity and extensibility.

2.1 Client-Server Architecture

A client-server architecture is commonly used in indoor
localization systems [2, 4, 5, 9, 11]. In these systems, the
applications using indoor locations are clients, and a server
performs the localization computation. To use the server,
the client is required to collect sensor data and transmit
to it. However, such client-server models are designed and
implemented as monolithic systems. Reusing a part of them
is not straightforward, such as redirecting the sensors to an
alternative algorithm. This is also not a good match for
integrating sensors across the physical environment.
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Figure 1: Typical Monolithic Client-Server Model
of Indoor Localization System

2.2 Publish/Subscribe Network

A publish/subscribe (or pub/sub) network is a message-
oriented network designed for asynchronous communication
in distributed systems. It allows a subscriber to get mes-
sages, which are generated by publishers, that match its
interests. In topic-based pub/sub networks, an interest is
identified by a topic, which is an unique string identifier for
a communication channel. This pattern is ideal for decou-
pling different components in terms of time, location, and
synchronization [3]. Moreover, the asynchronous communi-
cation model works well for mobile devices and sensors that
are power-limited as well as intermittently connected and
addressed. However, to our knowledge, no one has taken
advantage of this communication pattern and built a frame-
work over it for indoor localization systems.

3. NEED FOR MODULAR LOCALIZATION
SYSTEMS

Our goal is to make localization systems easier to develop,
compose, and reuse than a client-server model. In this sec-
tion, we discuss the problems of the typical client-server
model and how we solve them in BearLoc.

3.1 Current Localization Architectures

Many current indoor localization systems are based on the
client-server model, as shown in Figure 1. As an example,
consider an indoor localization system using WiFi Received
Signal Strength (RSS) as location fingerprints [1]. We could
build a mobile phone application that generates these RSS
values via an embedded WiFi chip. To get a location estima-
tion, it sends the RSS values to a localization server, which
maintains a database that maps fingerprints to previously
surveyed ground truth locations. The server searches the
database for the nearest fingerprint in Euclidean distance
and returns the location thus found to the client.

Both the client and server are tightly coupled. There is
no standard protocol for capturing sensor data schema and
the interaction between the client and server. Suppose later
there is an improved algorithm that uses n-grams of WiFi
RSS as fingerprints [5]. We want to use this new algorithm
simply by redirecting the application to a new server host-
ing this algorithm instance. However, if the new algorithm
doesn’t use the same protocol as the old, we have to change
the client code.

Furthermore, indoor localization systems actually have
more complicated configurations with respect to component
distribution. Some systems have sensors that are not de-
ployed on the mobile client device but dispersed throughout
the physical environment. For example, vibration sensors
[8] and cameras [6] deployed as building infrastructure can
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Figure 2: An Example of Decoupling and Composi-
tion of Indoor Localization Systems

be used to identify people and infer their locations. Also,
some applications are distributed between personal mobile
devices and infrastructures. In building management sys-
tems, personalized Heating, Ventilation, and Air Condition-
ing (HVAC) control will need the locations of people. Shop-
ping mall owners want to push advertisements to end users
based on their locations. These heterogeneous scenarios re-
quire flexible composability among distributed components,
which is not represented by the client server model.

3.2 Modular Architecture

It is ideal if deployed components can be reused and in-
tegrated for new applications with different settings. We
achieve this using a framework that naturally decouples in-
door localization systems and enables flexible composition.
Figure 2 gives an example of how we would want it to work.

In this example, we have three applications: a personal-
ized HVAC system, an indoor navigation application, and
an occupancy heatmap visualizer. Each uses different algo-
rithms for several reasons. First, they want different rep-
resentation of locations. The personalized HVAC system
wants a room number because it manipulates at the gran-
ularity of rooms. The navigation system and occupancy
heatmap visualization need coordinates to visualize on the
map. Furthermore, the navigation system requires higher
accuracy and shorter response time than the other two.
These applications need to pick an algorithm that fits their
needs.

Among the algorithms, Walkie-Markie [9] uses peak WiFi
RSS locations to calibrate dead-reckoning results. UnLoc
[11] essentially uses a similar idea, except that it uses more
types of landmarks from various sensors (e.g., WiFi, mag-
netometer). Because both of them output coordinates, the
personalized HVAC system needs a simple algorithm that
converts coordinates to room numbers using a map saved
on a server. Also, the indoor navigation system wants to
improve the accuracy by combining Walkie-Markie and Un-
Loc using a Particle Filter algorithm, so the algorithms are
multiplexed.

As with the algorithms, sensors are also multiplexed. The
sensors on the mobile device provide the data required by
both Walkie-Markie and UnLoc. The map is used by both
the Coordinate-Room Conversion algorithm and the Particle
Filter algorithm.

Unlike in a client-server model, a component can run any-
where based on its need. For example, the map is a sensor
that runs on a server, even though other sensors run on a
mobile device. Also, the personalized HVAC system runs
inside a building management system, whereas the indoor
navigation application runs on a mobile device.



It is not simple to set up such a system using the client-
server model. Now we look at what features are required for
this degree of composition flexibility.

System Partitioning

BearLoc breaks up the system into pieces that can: (1) run
on various distributed hardware, such as mobile devices and
infrastructure components; and (2) clearly represent differ-
ent roles in an indoor localization system, so developers can
implement them independently. We argue that indoor local-
ization systems essentially involve three different aspects, as
shown in Figure 2: sensors, algorithms, and applications.

Sensors are the components that generate any location
data, which are not limited to physical signals. For exam-
ple, these can be WiFi chips along with the drivers that
can read RSS values, or a textbox UI that takes strings de-
scribing locations from human input. Algorithms map sen-
sor location “readings” like WiFi RSS or user input location
into a particular location and its representations, such as
a room or coordinate. An algorithm can be as simple as
converting a coordinate to a room number based on a build-
ing map. Applications use the locations from algorithms for
their particular tasks. By abstracting these three types of
components, BearLoc enables sensors, algorithms, and ap-
plications to evolve independently.

Component Composition

In addition to system partitioning, components must also
interact. There are three design decisions in BearLoc that
enable easy and flexible composition. First, components
have to agree on a data schema. BearLoc provides a li-
brary of sensor and location schemata. Second, BearLoc
uses a topic-based pub/sub network designed for message-
oriented asynchronous communications. This enables much
flexibility in component composition, such as multicast and
many-to-many communication. Third, we define a Binding
concept that specifies how components can be “wired up,”
and design a Binding Control Protocol to initiate and main-
tain bindings. We will discuss Binding in detail in Section
4.1.

Sensor and Algorithm Multiplexing

It is not uncommon that a sensor or an algorithm is mul-
tiplexed as in our example. For many stateful algorithms
like a Kalman Filter or a Particle Filter, they must main-
tain the relationships between input data to output topic
while being multiplexed. BearLoc captures this relationship
using a binding, and also provides an Algorithm Manager
that implements this multiplexing. The algorithm manager
maintains one algorithm instance process for every binding;
therefore developers can focus on the algorithm itself. A sen-
sor does not have such issues, because it is a source of data
that everyone should see unaltered. Multiplexing a sensor is
then handled by the pub/sub network multicast.

4. SYSTEM ARCHITECTURE

The BearLoc architecture is shown in Figure 3. From
bottom to top, there are three layers: a topic-based pub/
sub network, the BearLoc framework, and component im-
plementations by developers. BearLoc provides wrappers
for all three categories of components: sensors, algorithms,
and applications. Developers build and deploy their compo-
nents using relevant wrappers.
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Figure 3: BearLoc Framework Architecture
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Figure 4: BearLoc Binding Definition

All components are distributable, and can run on any de-
vice or location. For example, a sensor driver can run on a
low-power mote or a web browser, and an application can
run as a part of an HVAC system or on a light actuator.
Even though an algorithm typically runs on a server, Bear-
Loc doesn’t disallow deploying algorithms on local devices
for localization without Internet connection.

4.1 Data Flow: The Concept of Binding

A binding specifies how an algorithm is “wired up” with
other components, such that data flow through it to gener-
ate estimated locations. The concept of binding is illustrated
in Figure 4 and a typical data flow between components is
shown in Figure 3. In a binding, an algorithm takes data
from existing sensors or other algorithms and publishes lo-
cations to applications or other algorithms. More complex
configurations, such as chaining and multiplexing, can be
composed using multiple bindings. A functioning indoor lo-
calization system consists of both running components and
bindings connecting them together. As BearLoc is built
upon a topic-based pub/sub network, a binding is created by
publishing to an algorithm’s control topic with several top-
ics of existing sensors/algorithms and a new output topic.
Other applications and algorithms can get the estimated lo-
cations by subscribing to the new output topic. This proce-
dure is defined by our Binding Control Protocol in Section
4.2.

4.2 Control Flow: Binding Control Protocol
BearLoc provides a Binding Control Protocol between al-
gorithms and applications for easy binding creation and main-
tenance. An application can start a new binding as follows:



BearLoc Binding Control Protocol

1: When an algorithm starts, it subscribes to its control
topic.

2: An application sends a Start Binding request to the con-
trol topic, which contains (1) a list of existing sensor/
algorithm output topics, (2) a new algorithm output
topic, (3) a keep-alive topic, and (4) optional algorithm-
dependant configuration data.

3: The algorithm (1) subscribes to the sensor/algorithm
output topics and the keep-alive topic, and (2) publishes
new locations to the algorithm output topic.

4: The application periodically sends keep-alive messages
to the algorithms it is interested in.

In Step 2, there are four elements in a start binding re-
quest. The first two tell the algorithm where to “wire” the in-
puts and output respectively. The keep-alive topic is used for
applications to preserve the binding and continue process-
ing sensor data. The optional configuration data is useful
for algorithms using shared sensors to filter data for specific
targets. For example, a vision-based human tracking algo-
rithm may only report locations of particular people. After
a new binding is created, other applications and algorithms
can subscribe to this algorithm and get location updates as
well.

The first two steps require the application to know the
algorithm specifications such as control topic, input sensor
list, and configuration options. This should be simplified
using a sensor and algorithm discovery service. We leave
this to our future work.

4.3 Components

4.3.1 Sensor

In Figure 3, the sensor driver is a data generation imple-
mentation of a Sensor Driver interface defined in BearLoc.
The interface specifies the sensor class, and lets the sensor
wrapper register a callback function for data updates. When
the sensor generates new data, the sensor wrapper relays it
to the sensor’s topic on the pub/sub network.

BearLoc provides a library of commonly used sensor classes.

A sensor class specifies the data schema of a sensor, and pro-
vides data serialization and deserialization functions. To en-
sure interoperability between sensors and algorithms, sensor
developers must use the sensor classes supported by Bear-
Loc.

4.3.2 Algorithm

An algorithm manager implements the binding control
protocol and multiplexes an algorithm. For every start bind-
ing request it receives, it starts one algorithm instance, which
is an executable process of its algorithm. The algorithm
executable is implemented by algorithm developers using a
BearLoc algorithm interface. The interface is an RPC server
wrapper that invokes localization computation methods. An
algorithm manager relays sensor data to an algorithm in-
stance and then directs localization results back as an RPC
invocation.

An algorithm manager also subscribes to the keep-alive
topics for all bindings. A binding expires when no message is
published to its keep-alive topic after a timeout period. Once
a binding expires, the algorithm manager kills the associated
algorithm instance, and unsubscribes from its topics.
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Figure 5: Composition of An Indoor Localization
System for Follow-me Displays

We can see an algorithm manager maintains one-to-one
mappings from bindings to algorithm instances. By man-
aging algorithm instances, BearLoc hides the multiplexing
overhead from algorithm developers.

4.3.3 Application

An application uses a localization service by initiating a
binding and registering a callback function for location up-
dates through the Application Wrapper. The application
wrapper implements the binding control protocol. It also
subscribes to the algorithm output topic, and invokes the
registered callback function on new locations.

5. CASE STUDY: FOLLOW-ME DISPLAYS

To demonstrate how developers use BearLoc, we now de-
scribe one use case. Imagine a building outfitted with net-
work connected displays throughout its interior. As users
move between different locations in the building, they may
interact with different displays at different points in time, de-
pending on which are nearby. The implementation of such a
follow-me display application relies on localization services.

We can build this system as shown in Figure 5, which in-
volves complex compositions like chaining and multiplexing.
It has one Bluetooth Low Energy (BLE) receiver deployed as
a BearLoc sensor in each room listening for advertisements
from users’ wearable devices' and publishing them. A BLE
room localization algorithm collects all advertisements and
searches for an ID configured during binding creation. To
ensure the person is facing the display in her room, an ori-
entation detection algorithm using the camera in the room
is triggered. Upon confirmation that a user is facing the dis-
play, the orientation detection algorithm outputs the room
number to the follow-me display application. Note that ev-
ery user of this application builds such a chain, and the BLE
receivers are shared among multiple BLE room localization
algorithms.

Because BearLoc modularizes this system, people can build
each component independently. We now describe how dif-
ferent developers will use BearLoc.

Sensor developers can set up the BLE receivers and cam-
eras using the BearLoc sensor wrapper. In particular, their
implementations need to pull data from BLE receivers and
camera drivers, instantiate data objects of sensor classes pro-
vided in BearLoc, and call the notification function. This is
set up without considering any other components.

Algorithm developers write programs that implement the
BearLoc algorithm interface, which contains only one method
called “localize”. For example, BLE room localization algo-
rithm developers must implement a “localize” method that
scans input advertisements and, if the target user is found,

!Such as a Fitbit Flex: https://www.fitbit.com/flex
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Measurement

returns the new location. This development only involves
the computation itself with no multiplexing concern. For
every algorithm, algorithm developers start an algorithm
manager, which registers the path of the algorithm’s exe-
cutable. In the follow-me display example, two algorithm
managers are created for BLE room localization and orien-
tation detection respectively.

Apart from implementing application specific logic, ap-
plication developers must compose components by creating
bindings. The follow-me display application needs to create
two bindings for every user: a BLE room localization bind-
ing, and an orientation detection binding. This is done by
calling the “start_binding” method provided by the BearLoc
application wrapper.

6. EVALUATION

We attempt to answer two questions: how much effort can
BearLoc save for developers? And how much overhead does
BearLoc introduce?

6.1 Experiment Setup

We implemented a sensor wrapper and application wrap-

per for Android in Java, and an algorithm manager in Python.

The algorithm manager talks to algorithm instances via the
Cap’n Proto? RPC Protocol. We use MQTT? as the pub/
sub network. Specifically, the Paho* MQTT client and the
Mosquitto® MQTT broker are used.

We implemented a WiFi RSS sensor and an audio sensor
for Android in Java, a WiFi RSS fingerprint-based algorithm
[1] in Python, and an Acoustic Background Spectrum (ABS)
algorithm [10] in MATLAB with a Python wrapper. We
also built an evaluation Android application that uses both
location algorithms. Our experimental setup is shown in
Figure 6.

6.2 Lines of Code

To assess the ease of deployment, we use lines of code
as an approximate metric for developer effort. We imple-
mented the WiFi RSS algorithm as a server in Python with
Twisted®. We also built both Audio and WiFi RSS sensors
for Android in Java. Both sensors report data to the server
over HTTP.

Table 1 summarizes the lines of code of all components
written by developers, with and without BearLoc. BearLoc
reduces nearly 700 lines of Java code for the two sensors.

’https://capnproto.org
Shttp://mqtt.org/
‘https://eclipse.org/paho/
Shttp://mosquitto.org/
Shttps://twistedmatrix.com
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This is primarily because the data queuing and retrans-
mission is moved to MQTT, and sensor data schemata are
provided by the BearLoc sensor classes library. The WiFi
RSS algorithm saves about 390 lines of code by moving the
Twisted server to the Bearloc algorithm manager. In total,
BearLoc reduces lines of code by 60% for developers.

6.3 Data Flow Overhead

We measure data flow overhead, defined as the time from
when sensor data is generated to when the location is re-
ceived by the application, subtracting the algorithm com-
putation time. It is illustrated in Figure 7. The data flow
overhead captures the network delay overhead in a data flow
introduced by distributing components in BearLoc.

The measurement is done for both WiFi RSS and ABS
algorithms with MQTT QoS value 1, which indicates the
messages are delivered to subscribers at least once. The
WiFi RSS sensor scans every 2 seconds, and the microphone
records for 1 second with 4-second intervals. The sensors
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and evaluation application run locally on an LG G2 Mini
Android phone. The WiFi RSS algorithm and the MQTT
broker both run on an Amazon EC2 server, and the ABS
algorithm runs on a laptop.

Because our sensors and application run on the same de-
vice, we can directly measure 74 — T'1 in Figure 7. The
algorithm computation time, which is 7'3 — T2, is recorded
in the algorithm manager and sent back to the application
along with the location result. Then the data flow overhead
is calculated as (T4 — T'1) — (T3 — T2).

Figure 8 and Figure 9 show the CDF of data flow overhead
of the two algorithms respectively. 90% of data flows in WiFi
RSS have overhead less than 0.1 second. BearLoc does not
add more overhead apart from MQTT [7]. Nearly 85% of
data flows in ABS have delay overhead less than 1 second.
The overhead here comes from audio recorder operations and
heavy audio data copying and serialization. Given these, we
conclude that the BearLoc framework introduces acceptable
network delay overhead.

7. CONCLUSION

In conclusion, we have argued that BearLoc simplifies
indoor localization system development with natural com-
ponent abstractions and an easy composition mechanism.
Starting with BearLoc, we aim to build an ecosystem for
indoor localization system components. Furthermore, we
hope these ideas can also be applied to more IoT systems
that have similar needs to indoor localization systems.
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